This paper presents a novel approach for nonlinear assimilation called score-based sequential Langevin sampling (SSLS) within a recursive Bayesian framework. SSLS decomposes the assimilation process into a sequence of prediction and update steps, utilizing dynamic models for prediction and observation data for updating via score-based Langevin Monte Carlo. An annealing strategy is incorporated to enhance convergence and facilitate multi-modal sampling. The convergence of SSLS in TV-distance is analyzed under certain conditions, providing insights into error behavior related to hyper-parameters. Numerical examples demonstrate its outstanding performance in high-dimensional and nonlinear scenarios, as well as in situations with sparse or partial measurements. Furthermore, SSLS effectively quantifies the uncertainty associated with the estimated states, highlighting its potential for error calibration.