We analyze geometric aspects of the gradient descent algorithm in Deep Learning (DL) networks. In particular, we prove that the globally minimizing weights and biases for the $\mathcal{L}^2$ cost obtained constructively in [Chen-Munoz Ewald 2023] for underparametrized ReLU DL networks can generically not be approximated via the gradient descent flow. We therefore conclude that the method introduced in [Chen-Munoz Ewald 2023] is disjoint from the gradient descent method.