Personal identification problem has been a major field of research in recent years. Biometrics-based technologies that exploit fingerprints, iris, face, voice and palmprints, have been in the center of attention to solve this problem. Palmprints can be used instead of fingerprints that have been of the earliest of these biometrics technologies. A palm is covered with the same skin as the fingertips but has a larger surface, giving us more information than the fingertips. The major features of the palm are palm-lines, including principal lines, wrinkles and ridges. Using these lines is one of the most popular approaches towards solving the palmprint recognition problem. Another robust feature is the wavelet energy of palms. In this paper we used a hybrid feature which combines both of these features. %Moreover, multispectral analysis is applied to improve the performance of the system. At the end, minimum distance classifier is used to match test images with one of the training samples. The proposed algorithm has been tested on a well-known multispectral palmprint dataset and achieved an average accuracy of 98.8\%.