Both biological cortico-thalamic networks and artificial transformer networks use canonical computations to perform a wide range of cognitive tasks. In this work, we propose that the structure of cortico-thalamic circuits is well suited to realize a computation analogous to multihead self-attention, the main algorithmic innovation of transformers. We start with the concept of a cortical unit module or microcolumn, and propose that superficial and deep pyramidal cells carry distinct computational roles. Specifically, superficial pyramidal cells encode an attention mask applied onto deep pyramidal cells to compute attention-modulated values. We show how to wire such microcolumns into a circuit equivalent to a single head of self-attention. We then suggest the parallel between one head of attention and a cortical area. On this basis, we show how to wire cortico-thalamic circuits to perform multihead self-attention. Along these constructions, we refer back to existing experimental data, and find noticeable correspondence. Finally, as a first step towards a mechanistic theory of synaptic learning in this framework, we derive formal gradients of a tokenwise mean squared error loss for a multihead linear self-attention block.