We consider the problem of sampling discrete field configurations $\phi$ from the Boltzmann distribution $[d\phi] Z^{-1} e^{-S[\phi]}$, where $S$ is the lattice-discretization of the continuous Euclidean action $\mathcal S$ of some quantum field theory. Since such densities arise as the approximation of the underlying functional density $[\mathcal D\phi(x)] \mathcal Z^{-1} e^{-\mathcal S[\phi(x)]}$, we frame the task as an instance of operator learning. In particular, we propose to approximate a time-dependent operator $\mathcal V_t$ whose time integral provides a mapping between the functional distributions of the free theory $[\mathcal D\phi(x)] \mathcal Z_0^{-1} e^{-\mathcal S_{0}[\phi(x)]}$ and of the target theory $[\mathcal D\phi(x)]\mathcal Z^{-1}e^{-\mathcal S[\phi(x)]}$. Whenever a particular lattice is chosen, the operator $\mathcal V_t$ can be discretized to a finite dimensional, time-dependent vector field $V_t$ which in turn induces a continuous normalizing flow between finite dimensional distributions over the chosen lattice. This flow can then be trained to be a diffeormorphism between the discretized free and target theories $[d\phi] Z_0^{-1} e^{-S_{0}[\phi]}$, $[d\phi] Z^{-1}e^{-S[\phi]}$. We run experiments on the $\phi^4$-theory to explore to what extent such operator-based flow architectures generalize to lattice sizes they were not trained on and show that pretraining on smaller lattices can lead to speedup over training only a target lattice size.