In this paper, we study the intelligent reflecting surface (IRS) deployment problem where a number of IRSs are optimally placed in a target area to improve its signal coverage with the serving base station (BS). To achieve this, we assume that there is a given set of candidate sites in the target area for deploying IRSs and divide the area into multiple grids of identical size. Then, we derive the average channel power gains from the BS to IRS in each candidate site and from this IRS to any grid in the target area in terms of IRS deployment parameters, including its size, position, height, and orientation. Thus, we are able to approximate the average cascaded channel power gain from the BS to each grid via any IRS, assuming an effective IRS reflection gain based on the large-scale channel knowledge only. Next, we formulate a multi-IRS deployment optimization problem to minimize the total deployment cost by selecting a subset of candidate sites for deploying IRSs and jointly optimizing their heights, orientations, and numbers of reflecting elements while satisfying a given coverage rate performance requirement over all grids in the target area. To solve this challenging combinatorial optimization problem, we first reformulate it as an integer linear programming problem and solve it optimally using the branch-and-bound (BB) algorithm. In addition, we propose an efficient successive refinement algorithm to further reduce computational complexity. Simulation results demonstrate that the proposed lower-complexity successive refinement algorithm achieves near-optimal performance but with significantly reduced running time compared to the proposed optimal BB algorithm, as well as superior performance-cost trade-off than other baseline IRS deployment strategies.