The use of the convolutional neural network based prior in imaging inverse problems has become increasingly popular. Current state-of-the-art methods, however, can easily result in severe overfitting, which makes a number of early stopping techniques necessary to eliminate the overfitting problem. To motivate our work, we review some existing approaches to image priors. We find that the deep image prior in combined with the handcrafted prior has an outstanding performance in terms of interpretability and representability. We propose a multi-code deep image prior, a multiple latent codes variant of the deep image prior, which can be utilized to eliminate overfitting and is also robust to the different numbers of the latent codes. Due to the non-differentiability of the handcrafted prior, we use the alternative direction method of multipliers (ADMM) algorithm. We compare the performance of the proposed method on an image denoising problem and a highly ill-posed CT reconstruction problem against the existing state-of-the-art methods, including PnP-DIP, DIP-VBTV and ADMM DIP-WTV methods. For the CelebA dataset denoising, we obtain 1.46 dB peak signal to noise ratio improvement against all compared methods. For the CT reconstruction, the corresponding average improvement of three test images is 4.3 dB over DIP, and 1.7 dB over ADMM DIP-WTV, and 1.2 dB over PnP-DIP along with a significant improvement in the structural similarity index.