A multi-agent deep reinforcement learning (MADRL) is a promising approach to challenging problems in wireless environments involving multiple decision-makers (or actors) with high-dimensional continuous action space. In this paper, we present a MADRL-based approach that can jointly optimize precoders to achieve the outer-boundary, called pareto-boundary, of the achievable rate region for a multiple-input single-output (MISO) interference channel (IFC). In order to address two main challenges, namely, multiple actors (or agents) with partial observability and multi-dimensional continuous action space in MISO IFC setup, we adopt a multi-agent deep deterministic policy gradient (MA-DDPG) framework in which decentralized actors with partial observability can learn a multi-dimensional continuous policy in a centralized manner with the aid of shared critic with global information. Meanwhile, we will also address a phase ambiguity issue with the conventional complex baseband representation of signals widely used in radio communications. In order to mitigate the impact of phase ambiguity on training performance, we propose a training method, called phase ambiguity elimination (PAE), that leads to faster learning and better performance of MA-DDPG in wireless communication systems. The simulation results exhibit that MA-DDPG is capable of learning a near-optimal precoding strategy in a MISO IFC environment. To the best of our knowledge, this is the first work to demonstrate that the MA-DDPG framework can jointly optimize precoders to achieve the pareto-boundary of achievable rate region in a multi-cell multi-user multi-antenna system.