Machine learning methods have been used to accelerate the molecule optimization process. However, efficient search for optimized molecules satisfying several properties with scarce labeled data remains a challenge for machine learning molecule optimization. In this study, we propose MOMO, a multi-objective molecule optimization framework to address the challenge by combining learning of chemical knowledge with Pareto-based multi-objective evolutionary search. To learn chemistry, it employs a self-supervised codec to construct an implicit chemical space and acquire the continues representation of molecules. To explore the established chemical space, MOMO uses multi-objective evolution to comprehensively and efficiently search for similar molecules with multiple desirable properties. We demonstrate the high performance of MOMO on four multi-objective property and similarity optimization tasks, and illustrate the search capability of MOMO through case studies. Remarkably, our approach significantly outperforms previous approaches in optimizing three objectives simultaneously. The results show the optimization capability of MOMO, suggesting to improve the success rate of lead molecule optimization.