The primary aim of this study is to enhance the accuracy of our aerodynamic Fluid-Structure Interaction (FSI) model to support the controlled tracking of 3D flight trajectories by Aerobat, which is a dynamic morphing winged drone. Building upon our previously documented Unsteady Aerodynamic model rooted in horseshoe vortices, we introduce a new iteration of Aerobat, labeled as version beta, which is designed for attachment to a Kinova arm. Through a series of experiments, we gather force-moment data from the robotic arm attachment and utilize it to fine-tune our unsteady model for banking turn maneuvers. Subsequently, we employ the tuned FSI model alongside a collocation control strategy to accomplish 3D banking turns of Aerobat within simulation environments. The primary contribution lies in presenting a methodical approach to calibrate our FSI model to predict complex 3D maneuvers and successfully assessing the model's potential for closed-loop flight control of Aerobat using an optimization-based collocation method.