Time series data are valuable but are often inscrutable. Gaining trust in time series classifiers for finance, healthcare, and other critical applications may rely on creating interpretable models. Researchers have previously been forced to decide between interpretable methods that lack predictive power and deep learning methods that lack transparency. In this paper, we propose a novel Mimic algorithm that retains the predictive accuracy of the strongest classifiers while introducing interpretability. Mimic mirrors the learning method of an existing multivariate time series classifier while simultaneously producing a visual representation that enhances user understanding of the learned model. Experiments on 26 time series datasets support Mimic's ability to imitate a variety of time series classifiers visually and accurately.