Monitoring and managing the growth and quality of fruits are very important tasks. To effectively train deep learning models like YOLO for real-time fruit detection, high-quality image datasets are essential. However, such datasets are often lacking in agriculture. Generative AI models can help create high-quality images. In this study, we used MidJourney and Firefly tools to generate images of melon greenhouses and post-harvest fruits through text-to-image, pre-harvest image-to-image, and post-harvest image-to-image methods. We evaluated these AIgenerated images using PSNR and SSIM metrics and tested the detection performance of the YOLOv9 model. We also assessed the net quality of real and generated fruits. Our results showed that generative AI could produce images very similar to real ones, especially for post-harvest fruits. The YOLOv9 model detected the generated images well, and the net quality was also measurable. This shows that generative AI can create realistic images useful for fruit detection and quality assessment, indicating its great potential in agriculture. This study highlights the potential of AI-generated images for data augmentation in melon fruit detection and quality assessment and envisions a positive future for generative AI applications in agriculture.