Convolutional neural networks have made significant strides in medical image analysis in recent years. However, the local nature of the convolution operator inhibits the CNNs from capturing global and long-range interactions. Recently, Transformers have gained popularity in the computer vision community and also medical image segmentation. But scalability issues of self-attention mechanism and lack of the CNN like inductive bias have limited their adoption. In this work, we present MaxViT-UNet, an Encoder-Decoder based hybrid vision transformer for medical image segmentation. The proposed hybrid decoder, also based on MaxViT-block, is designed to harness the power of convolution and self-attention mechanism at each decoding stage with minimal computational burden. The multi-axis self-attention in each decoder stage helps in differentiating between the object and background regions much more efficiently. The hybrid decoder block initially fuses the lower level features upsampled via transpose convolution, with skip-connection features coming from hybrid encoder, then fused features are refined using multi-axis attention mechanism. The proposed decoder block is repeated multiple times to accurately segment the nuclei regions. Experimental results on MoNuSeg dataset proves the effectiveness of the proposed technique. Our MaxViT-UNet outperformed the previous CNN only (UNet) and Transformer only (Swin-UNet) techniques by a large margin of 2.36% and 5.31% on Dice metric respectively.