Given the importance of reconfigurable intelligent surfaces (RISs) in next-generation mobile systems, several RIS variants have been proposed in recent years. Omni-digital-RIS (omni-DRIS) is one of the newly introduced variants of optical RIS that can successfully be driven by bit sequences to control lights emerging from simultaneous reflection and refraction processes, impacting both the achievable rate and the required number of omni-DRIS elements. In this paper, we analyze the effects of omni-DRIS-assisted transmission environment parameters to maximize the achievable rate and highlight the corresponding number of omni-DRIS elements. Furthermore, we show that the number of omni-DRIS elements that yields the highest achievable rate largely depends on the number of bits per omni-DRIS control sequence. On the other hand, this rate is determined by the remaining parameters of the transmission system and environmental factors, which include the total transmit power, transmission bandwidth, number of transmitters and users, and the channel DC gain.