https://github.com/ninglab/GeLLMO.
Despite recent advancements, most computational methods for molecule optimization are constrained to single- or double-property optimization tasks and suffer from poor scalability and generalizability to novel optimization tasks. Meanwhile, Large Language Models (LLMs) demonstrate remarkable out-of-domain generalizability to novel tasks. To demonstrate LLMs' potential for molecule optimization, we introduce $\mathtt{MoMUInstruct}$, the first high-quality instruction-tuning dataset specifically focused on complex multi-property molecule optimization tasks. Leveraging $\mathtt{MoMUInstruct}$, we develop $\mathtt{GeLLM^3O}$s, a series of instruction-tuned LLMs for molecule optimization. Extensive evaluations across 5 in-domain and 5 out-of-domain tasks demonstrate that $\mathtt{GeLLM^3O}$s consistently outperform state-of-the-art baselines. $\mathtt{GeLLM^3O}$s also exhibit outstanding zero-shot generalization to unseen tasks, significantly outperforming powerful closed-source LLMs. Such strong generalizability demonstrates the tremendous potential of $\mathtt{GeLLM^3O}$s as foundational models for molecule optimization, thereby tackling novel optimization tasks without resource-intensive retraining. $\mathtt{MoMUInstruct}$, models, and code are accessible through