We propose Masked Capsule Autoencoders (MCAE), the first Capsule Network that utilises pretraining in a self-supervised manner. Capsule Networks have emerged as a powerful alternative to Convolutional Neural Networks (CNNs), and have shown favourable properties when compared to Vision Transformers (ViT), but have struggled to effectively learn when presented with more complex data, leading to Capsule Network models that do not scale to modern tasks. Our proposed MCAE model alleviates this issue by reformulating the Capsule Network to use masked image modelling as a pretraining stage before finetuning in a supervised manner. Across several experiments and ablations studies we demonstrate that similarly to CNNs and ViTs, Capsule Networks can also benefit from self-supervised pretraining, paving the way for further advancements in this neural network domain. For instance, pretraining on the Imagenette dataset, a dataset of 10 classes of Imagenet-sized images, we achieve not only state-of-the-art results for Capsule Networks but also a 9% improvement compared to purely supervised training. Thus we propose that Capsule Networks benefit from and should be trained within a masked image modelling framework, with a novel capsule decoder, to improve a Capsule Network's performance on realistic-sized images.