https://github.com/ycheoo/pMAE.
Federated learning is a specific distributed learning paradigm in which a central server aggregates updates from multiple clients' local models, thereby enabling the server to learn without requiring clients to upload their private data, maintaining data privacy. While existing federated learning methods are primarily designed for static data, real-world applications often require clients to learn new categories over time. This challenge necessitates the integration of continual learning techniques, resulting in federated continual learning (FCL). Although advanced prompt-based continual learning methods leverage pre-trained transformers to mitigate catastrophic forgetting, they do not adequately address the non-IID challenges in federated learning. To address both catastrophic forgetting and non-IID issues, we propose to use masked autoencoders (MAEs) as parameter-efficient federated continual learners, called pMAE. pMAE learns reconstructive prompt on the client side through image reconstruction using MAEs. On the server side, it reconstructs the uploaded restore information to capture the data distribution across previous tasks and different clients, using these reconstructed images to finetune discriminative prompt and classifier parameters designed for classification, thereby alleviating catastrophic forgetting and non-IID challenges on a global scale. Experimental results demonstrate that pMAE achieves performance comparable to existing prompt-based methods and can enhance their effectiveness, particularly when using self-supervised pre-trained transformers as the backbone. Code is available at: