Despite the rapid advancement of mobile applications, predicting app usage remains a formidable challenge due to intricate user behaviours and ever-evolving contexts. To address these issues, this paper introduces the Mobile App Prediction Leveraging Large Language Model Embeddings (MAPLE) model. This innovative approach utilizes Large Language Models (LLMs) to predict app usage accurately. Rigorous testing on two public datasets highlights MAPLE's capability to decipher intricate patterns and comprehend user contexts. These robust results confirm MAPLE's versatility and resilience across various scenarios. While its primary design caters to app prediction, the outcomes also emphasize the broader applicability of LLMs in different domains. Through this research, we emphasize the potential of LLMs in app usage prediction and suggest their transformative capacity in modelling human behaviours across diverse fields.