The recent advances in large language models (LLMs) have led to the creation of many modular AI agents. These agents employ LLMs as zero-shot learners to perform sub-tasks in order to solve complex tasks set forth by human users. We propose an approach to enhance the robustness and performance of modular AI agents that utilize LLMs as zero-shot learners. Our iterative machine teaching method offers an efficient way to teach AI agents over time with limited human feedback, addressing the limit posed by the quality of zero-shot learning. We advocate leveraging the data traces from initial deployments and outputs or annotations from the zero-shot learners to train smaller and task-specific substitute models which can reduce both the monetary costs and environmental impact. Our machine teaching process avails human expertise to correct examples with a high likelihood of misannotations. Results on three tasks, common to conversational AI agents, show that close-to-oracle performance can be achieved with supervision on 20-70% of the dataset depending upon the complexity of the task and performance of zero-shot learners.