High pilot overhead and peak-to-average power ratio (PAPR) are challenging issues in channel estimation for orthogonal time frequency space (OTFS) systems. ZP-OTFS is a modified OTFS system where multiple rows along the delay axis are zero. We propose a two-step channel estimation method for the ZP-OTFS system. The proposed method inserts pilot sequences in the zero bins of the ZP-OTFS system, resulting in low overhead and PAPR. Our simulation results demonstrate the effectiveness of the proposed method and show that it outperforms embedded pilot estimation in terms of normalized mean square error (NMSE) at the same bit error rate (BER).