https://github.com/batuhankmkaraman/LoMaR.
Breast cancer is one of the leading causes of mortality among women worldwide. Early detection and risk assessment play a crucial role in improving survival rates. Therefore, annual or biennial mammograms are often recommended for screening in high-risk groups. Mammograms are typically interpreted by expert radiologists based on the Breast Imaging Reporting and Data System (BI-RADS), which provides a uniform way to describe findings and categorizes them to indicate the level of concern for breast cancer. Recently, machine learning (ML) and computational approaches have been developed to automate and improve the interpretation of mammograms. However, both BI-RADS and the ML-based methods focus on the analysis of data from the present and sometimes the most recent prior visit. While it is clear that temporal changes in image features of the longitudinal scans should carry value for quantifying breast cancer risk, no prior work has conducted a systematic study of this. In this paper, we extend a state-of-the-art ML model to ingest an arbitrary number of longitudinal mammograms and predict future breast cancer risk. On a large-scale dataset, we demonstrate that our model, LoMaR, achieves state-of-the-art performance when presented with only the present mammogram. Furthermore, we use LoMaR to characterize the predictive value of prior visits. Our results show that longer histories (e.g., up to four prior annual mammograms) can significantly boost the accuracy of predicting future breast cancer risk, particularly beyond the short-term. Our code and model weights are available at