Adversarial training significantly enhances adversarial robustness, yet superior performance is predominantly achieved on balanced datasets. Addressing adversarial robustness in the context of unbalanced or long-tailed distributions is considerably more challenging, mainly due to the scarcity of tail data instances. Previous research on adversarial robustness within long-tailed distributions has primarily focused on combining traditional long-tailed natural training with existing adversarial robustness methods. In this study, we provide an in-depth analysis for the challenge that adversarial training struggles to achieve high performance on tail classes in long-tailed distributions. Furthermore, we propose a simple yet effective solution to advance adversarial robustness on long-tailed distributions through a novel self-distillation technique. Specifically, this approach leverages a balanced self-teacher model, which is trained using a balanced dataset sampled from the original long-tailed dataset. Our extensive experiments demonstrate state-of-the-art performance in both clean and robust accuracy for long-tailed adversarial robustness, with significant improvements in tail class performance on various datasets. We improve the accuracy against PGD attacks for tail classes by 20.3, 7.1, and 3.8 percentage points on CIFAR-10, CIFAR-100, and Tiny-ImageNet, respectively, while achieving the highest robust accuracy.