Graph learning from signals is a core task in Graph Signal Processing (GSP). One of the most commonly used models to learn graphs from stationary signals is SpecT. However, its practical formulation rSpecT is known to be sensitive to hyperparameter selection and, even worse, to suffer from infeasibility. In this paper, we give the first condition that guarantees the infeasibility of rSpecT and design a novel model (LogSpecT) and its practical formulation (rLogSpecT) to overcome this issue. Contrary to rSpecT, the novel practical model rLogSpecT is always feasible. Furthermore, we provide recovery guarantees of rLogSpecT, which are derived from modern optimization tools related to epi-convergence. These tools could be of independent interest and significant for various learning problems. To demonstrate the advantages of rLogSpecT in practice, a highly efficient algorithm based on the linearized alternating direction method of multipliers (L-ADMM) is proposed. The subproblems of L-ADMM admit closed-form solutions and the convergence is guaranteed. Extensive numerical results on both synthetic and real networks corroborate the stability and superiority of our proposed methods, underscoring their potential for various graph learning applications.