This article presents a novel approach of using reconfigurable intelligent surfaces (RISs) in the transmitter of indoor visible light communication (VLC) systems to enhance data rate uniformity and maintain adequate illumination. In this approach, a liquid crystal (LC)-based RIS is placed in front of the LED arrays of the transmitter to form an LC-based RIS-enabled VLC transmitter. This RIS-enabled transmitter is able to perform new functions such as transmit light steering and amplification and demonstrates very high data rate and illumination performance when compared with traditional VLC transmitters with circular and distributed LED arrays and the more recent angle diversity transmitter. Simulation results reveal the strong potential of LC-based RIS-aided transmitters in satisfying the joint illumination and communication needs of indoor VLC systems and positions VLC as a critical essential block for next generation communication networks. Several challenging and exciting issues related to the realization of such transmitters are discussed.