The recent work of Papyan, Han, & Donoho (2020) presented an intriguing "Neural Collapse" phenomenon, showing a structural property of interpolating classifiers in the late stage of training. This opened a rich area of exploration studying this phenomenon. Our motivation is to study the upper limits of this research program: How far will understanding Neural Collapse take us in understanding deep learning? First, we investigate its role in generalization. We refine the Neural Collapse conjecture into two separate conjectures: collapse on the train set (an optimization property) and collapse on the test distribution (a generalization property). We find that while Neural Collapse often occurs on the train set, it does not occur on the test set. We thus conclude that Neural Collapse is primarily an optimization phenomenon, with as-yet-unclear connections to generalization. Second, we investigate the role of Neural Collapse in feature learning. We show simple, realistic experiments where training longer leads to worse last-layer features, as measured by transfer-performance on a downstream task. This suggests that neural collapse is not always desirable for representation learning, as previously claimed. Finally, we give preliminary evidence of a "cascading collapse" phenomenon, wherein some form of Neural Collapse occurs not only for the last layer, but in earlier layers as well. We hope our work encourages the community to continue the rich line of Neural Collapse research, while also considering its inherent limitations.