Currently, large pre-trained models are widely applied in neural code completion systems, such as Github Copilot, aiXcoder, and TabNine. Though large models significantly outperform their smaller counterparts, a survey with 2,631 participants reveals that around 70\% displayed code completions from Copilot are not accepted by developers. Being reviewed but not accepted, these completions bring a threat to productivity. Besides, considering the high cost of the large models, it is a huge waste of computing resources and energy, which severely goes against the sustainable development principle of AI technologies. Additionally, in code completion systems, the completion requests are automatically and actively issued to the models as developers type out, which significantly aggravates the workload. However, to the best of our knowledge, such waste has never been realized, not to mention effectively addressed, in the context of neural code completion. Hence, preventing such profitless code completions from happening in a cost-friendly way is of urgent need. To fill this gap, we first investigate the prompts of these completions and find four observable prompt patterns, which demonstrate the feasibility of identifying such prompts based on prompts themselves. Motivated by this finding, we propose an early-rejection mechanism to turn down low-return prompts by foretelling the completion qualities without sending them to the LCM. Further, we propose a lightweight Transformer-based estimator to demonstrate the feasibility of the mechanism. The experimental results show that the estimator rejects low-return prompts with a promising accuracy of 83.2%.