Coordinate relation refers to the relation between instances of a concept and the relation between the directly hyponyms of a concept. In this paper, we focus on the task of extracting terms which are coordinate with a user given seed term in Chinese, and grouping the terms which belong to different concepts if the seed term has several meanings. We propose a semi-supervised method that integrates manually defined linguistic patterns and automatically learned semi-structural patterns to extract coordinate terms in Chinese from web search results. In addition, terms are grouped into different concepts based on their co-occurring terms and contexts. We further calculate the saliency scores of extracted terms and rank them accordingly. Experimental results demonstrate that our proposed method generates results with high quality and wide coverage.