Effective communication is an essential component in collaborative multi-agent systems. Situations where explicit messaging is not feasible have been common in human society throughout history, which motivate the study of implicit communication. Previous works on learning implicit communication mostly rely on theory of mind (ToM), where agents infer the mental states and intentions of others by interpreting their actions. However, ToM-based methods become less effective in making accurate inferences in complex tasks. In this work, we propose the Implicit Channel Protocol (ICP) framework, which allows agents to construct implicit communication channels similar to the explicit ones. ICP leverages a subset of actions, denoted as the scouting actions, and a mapping between information and these scouting actions that encodes and decodes the messages. We propose training algorithms for agents to message and act, including learning with a randomly initialized information map and with a delayed information map. The efficacy of ICP has been tested on the tasks of Guessing Number, Revealing Goals, and Hanabi, where ICP significantly outperforms baseline methods through more efficient information transmission.