Forecasting the behavior of high-dimensional dynamical systems using machine learning (ML) requires efficient methods to learn the underlying physical model. We demonstrate spatiotemporal chaos prediction of a heuristic atmospheric weather model using an ML architecture that, when combined with a next-generation reservoir computer, displays state-of-the-art performance with a training time $10^3-10^4$ times faster and training data set $\sim 10^2$ times smaller than other ML algorithms. We also take advantage of the translational symmetry of the model to further reduce the computational cost and training data, each by a factor of $\sim$10.