Control Barrier Functions (CBFs) provide an elegant framework for designing safety filters for nonlinear control systems by constraining their trajectories to an invariant subset of a prespecified safe set. However, the task of finding a CBF that concurrently maximizes the volume of the resulting control invariant set while accommodating complex safety constraints, particularly in high relative degree systems with actuation constraints, continues to pose a substantial challenge. In this work, we propose a novel self-supervised learning framework that holistically addresses these hurdles. Given a Boolean composition of multiple state constraints that define the safe set, our approach starts with building a single continuously differentiable function whose 0-superlevel set provides an inner approximation of the safe set. We then use this function together with a smooth neural network to parameterize the CBF candidate. Finally, we design a training loss function based on a Hamilton-Jacobi partial differential equation to train the CBF while enlarging the volume of the induced control invariant set. We demonstrate the effectiveness of our approach via numerical experiments.