Recent supervised and unsupervised image representation learning algorithms have achieved quantum leaps. However, these techniques do not account for representation resilience against noise in their design paradigms. Consequently, these effective methods suffer failure when confronted with noise outside the training distribution, such as complicated real-world noise that is usually opaque to model training. To address this issue, dual domains are optimized to separately model a canonical space for noisy representations, namely the Noise-Robust (NR) domain, and a twinned canonical clean space, namely the Noise-Free (NF) domain, by maximizing the interaction information between the representations. Given the dual canonical domains, we design a target-guided implicit neural mapping function to accurately translate the NR representations to the NF domain, yielding noise-resistant representations by eliminating noise regencies. The proposed method is a scalable module that can be readily integrated into existing learning systems to improve their robustness against noise. Comprehensive trials of various tasks using both synthetic and real-world noisy data demonstrate that the proposed Target-Guided Dual-Domain Translation (TDDT) method is able to achieve remarkable performance and robustness in the face of complex noisy images.