It has been experimentally demonstrated that humans are able to learn in a manner that allows them to make predictions on categories for which they have not seen any examples (Malaviya et al., 2022). Sucholutsky and Schonlau (2020) have recently presented a machine learning approach that aims to do the same. They utilise synthetically generated data and demonstrate that it is possible to achieve sub-linear scaling and develop models that can learn to recognise N classes from M training samples where M is less than N - aka less-than-one shot learning. Their method was, however, defined for univariate or simple multivariate data (Sucholutsky et al., 2021). We extend it to work on large, high-dimensional and real-world datasets and empirically validate it in this new and challenging setting. We apply this method to learn previously unseen NLP tasks from very few examples (4, 8 or 16). We first generate compact, sophisticated less-than-one shot representations called soft-label prototypes which are fitted on training data, capturing the distribution of different classes across the input domain space. We then use a modified k-Nearest Neighbours classifier to demonstrate that soft-label prototypes can classify data competitively, even outperforming much more computationally complex few-shot learning methods.