Online controlled experiments are a crucial tool to allow for confident decision-making in technology companies. A North Star metric is defined (such as long-term revenue or user retention), and system variants that statistically significantly improve on this metric in an A/B-test can be considered superior. North Star metrics are typically delayed and insensitive. As a result, the cost of experimentation is high: experiments need to run for a long time, and even then, type-II errors (i.e. false negatives) are prevalent. We propose to tackle this by learning metrics from short-term signals that directly maximise the statistical power they harness with respect to the North Star. We show that existing approaches are prone to overfitting, in that higher average metric sensitivity does not imply improved type-II errors, and propose to instead minimise the $p$-values a metric would have produced on a log of past experiments. We collect such datasets from two social media applications with over 160 million Monthly Active Users each, totalling over 153 A/B-pairs. Empirical results show that we are able to increase statistical power by up to 78% when using our learnt metrics stand-alone, and by up to 210% when used in tandem with the North Star. Alternatively, we can obtain constant statistical power at a sample size that is down to 12% of what the North Star requires, significantly reducing the cost of experimentation.