Chordal graphs can be used to encode dependency models that are representable by both directed acyclic and undirected graphs. This paper discusses a very simple and efficient algorithm to learn the chordal structure of a probabilistic model from data. The algorithm is a greedy hill-climbing search algorithm that uses the inclusion boundary neighborhood over chordal graphs. In the limit of a large sample size and under appropriate hypotheses on the scoring criterion, we prove that the algorithm will find a structure that is inclusion-optimal when the dependency model of the data-generating distribution can be represented exactly by an undirected graph. The algorithm is evaluated on simulated datasets.