The predominant approach to facial action unit (AU) detection revolves around a supervised multi-label binary classification problem. Existing methodologies often encode pixel-level information of AUs, thereby imposing substantial demands on model complexity and expressiveness. Moreover, this practice elevates the susceptibility to overfitting due to the presence of noisy AU labels. In the present study, we introduce a contrastive learning framework enhanced by both supervised and self-supervised signals. The objective is to acquire discriminative features, deviating from the conventional pixel-level learning paradigm within the domain of AU detection. To address the challenge posed by noisy AU labels, we augment the supervised signal through the introduction of a self-supervised signal. This augmentation is achieved through positive sample sampling, encompassing three distinct types of positive sample pairs. Furthermore, to mitigate the imbalanced distribution of each AU type, we employ an importance re-weighting strategy tailored for minority AUs. The resulting loss, denoted as AUNCE, is proposed to encapsulate this strategy. Our experimental assessments, conducted on two widely-utilized benchmark datasets (BP4D and DISFA), underscore the superior performance of our approach compared to state-of-the-art methods in the realm of AU detection.