$ $Let $F$ be a multivariate function from a product set $\Sigma^n$ to an Abelian group $G$. A $k$-partition of $F$ with cost $\delta$ is a partition of the set of variables $\mathbf{V}$ into $k$ non-empty subsets $(\mathbf{X}_1, \dots, \mathbf{X}_k)$ such that $F(\mathbf{V})$ is $\delta$-close to $F_1(\mathbf{X}_1)+\dots+F_k(\mathbf{X}_k)$ for some $F_1, \dots, F_k$ with respect to a given error metric. We study algorithms for agnostically learning $k$ partitions and testing $k$-partitionability over various groups and error metrics given query access to $F$. In particular we show that $1.$ Given a function that has a $k$-partition of cost $\delta$, a partition of cost $\mathcal{O}(k n^2)(\delta + \epsilon)$ can be learned in time $\tilde{\mathcal{O}}(n^2 \mathrm{poly} (1/\epsilon))$ for any $\epsilon > 0$. In contrast, for $k = 2$ and $n = 3$ learning a partition of cost $\delta + \epsilon$ is NP-hard. $2.$ When $F$ is real-valued and the error metric is the 2-norm, a 2-partition of cost $\sqrt{\delta^2 + \epsilon}$ can be learned in time $\tilde{\mathcal{O}}(n^5/\epsilon^2)$. $3.$ When $F$ is $\mathbb{Z}_q$-valued and the error metric is Hamming weight, $k$-partitionability is testable with one-sided error and $\mathcal{O}(kn^3/\epsilon)$ non-adaptive queries. We also show that even two-sided testers require $\Omega(n)$ queries when $k = 2$. This work was motivated by reinforcement learning control tasks in which the set of control variables can be partitioned. The partitioning reduces the task into multiple lower-dimensional ones that are relatively easier to learn. Our second algorithm empirically increases the scores attained over previous heuristic partitioning methods applied in this context.