When specific events seem to spur others in their wake, marked Hawkes processes enable us to reckon with their statistics. The underdetermined empirical nature of these event-triggering mechanisms hinders estimation in the multivariate setting. Spatiotemporal applications alleviate this obstacle by allowing relationships to depend only on relative distances in real Euclidean space; we employ the framework as a vessel for embedding arbitrary event types in a new latent space. By performing synthetic experiments on short records as well as an investigation into options markets and pathogens, we demonstrate that learning the embedding alongside a point process model uncovers the coherent, rather than spurious, interactions.