To deploy language models safely, it is crucial that they abstain from responding to inappropriate requests. Several prior studies test the safety promises of models based on their effectiveness in blocking malicious requests. In this work, we focus on evaluating the underlying techniques that cause models to abstain. We create SELECT, a benchmark derived from a set of benign concepts (e.g., "rivers") from a knowledge graph. The nature of SELECT enables us to isolate the effects of abstention techniques from other safety training procedures, as well as evaluate their generalization and specificity. Using SELECT, we benchmark different abstention techniques over six open-weight and closed-source models. We find that the examined techniques indeed cause models to abstain with over $80\%$ abstention rates. However, these techniques are not as effective for descendants of the target concepts, with refusal rates declining by $19\%$. We also characterize the generalization-vs-specificity trade-offs for different techniques. Overall, no single technique is invariably better than the others. Our findings call for a careful evaluation of different aspects of abstention, and hopefully inform practitioners of various trade-offs involved.