Direct Preference Optimization (DPO) demonstrates the advantage of aligning a large language model with human preference using only an offline dataset. However, DPO has the limitation that the KL penalty, which prevents excessive deviation from the reference model, is static throughout the training process. Several methods try to turn this static KL penalty into a dynamic one, but no approach can adaptively assign different KL penalties for each preference pair. In this paper, we propose $\varepsilon$-Direct Preference Optimization ($\varepsilon$-DPO), which allows adaptive control of the KL penalty strength $\beta$ for each preference pair. Specifically, $\varepsilon$-DPO adaptively controls $\beta$ for each preference pair based on the monotonicity of logits as a preference model under the perturbation of $\beta$ during training by simply reusing the logit of the current policy and the reference policy. Experimental results show that $\varepsilon$-DPO outperforms existing direct alignment algorithms and KL penalty relaxation methods on general chatbot benchmarks, highlighting the significance of adaptive KL penalty relaxation at the instance-level in DPO.