In this paper we study the problem of estimating innercyclic time intervals within repetitive motion sequences of top-class swimmers in a swimming channel. Interval limits are given by temporal occurrences of key-poses, i.e. distinctive postures of the body. A key-pose is defined by means of only one or two specific features of the complete posture. It is often difficult to detect such subtle features directly. We therefore propose the following method: Given that we observe the swimmer from the side, we build a pictorial structure of poselets to robustly identify random support poses within the regular motion of a swimmer. We formulate a maximum likelihood model which predicts a key-pose given the occurrences of multiple support poses within one stroke. The maximum likelihood can be extended with prior knowledge about the temporal location of a key-pose in order to improve the prediction recall. We experimentally show that our models reliably and robustly detect key-poses with a high precision and that their performance can be improved by extending the framework with additional camera views.