Knowledge graphs (KGs) have become important auxiliary information for helping recommender systems obtain a good understanding of user preferences. Despite recent advances in KG-based recommender systems, existing methods are prone to suboptimal performance due to the following two drawbacks: 1) current KG-based methods over-emphasize the heterogeneous structural information within a KG and overlook the underlying semantics of its connections, hindering the recommender from distilling the explicit user preferences; and 2) the inherent incompleteness of a KG (i.e., missing facts, relations and entities) will deteriorate the information extracted from KG and weaken the representation learning of recommender systems. To tackle the aforementioned problems, we investigate the potential of jointly incorporating the structural and semantic information within a KG to model user preferences in finer granularity. A new framework for KG-based recommender systems, namely \textit{K}nowledge \textit{I}nfomax \textit{R}ecommender \textit{S}ystem with \textit{C}ontrastive \textit{L}earning (KIRS-CL) is proposed in this paper. Distinct from previous KG-based approaches, KIRS-CL utilizes structural and connectivity information with high-quality item embeddings learned by encoding KG triples with a pre-trained language model. These well-trained entity representations enable KIRS-CL to find the item to recommend via the preference connection between the user and the item. Additionally, to improve the generalizability of our framework, we introduce a contrastive warm-up learning strategy, making it capable of dealing with both warm- and cold-start recommendation scenarios. Extensive experiments on two real-world datasets demonstrate remarkable improvements over state-of-the-art baselines.