Fingerprinting based WLAN indoor positioning system (FWIPS) provides a promising indoor positioning solution to meet the growing interests for indoor location-based services (e.g., indoor way finding or geo-fencing). FWIPS is preferred because it requires no additional infrastructure for deploying an FWIPS and achieving the position estimation by reusing the available WLAN and mobile devices, and capable of providing absolute position estimation. For fingerprinting based positioning (FbP), a model is created to provide reference values of observable features (e.g., signal strength from access point (AP)) as a function of location during offline stage. One widely applied method to build a complete and an accurate reference database (i.e. radio map (RM)) for FWIPS is carrying out a site survey throughout the region of interest (RoI). Along the site survey, the readings of received signal strength (RSS) from all visible APs at each reference point (RP) are collected. This site survey, however, is time-consuming and labor-intensive, especially in the case that the RoI is large (e.g., an airport or a big mall). This bottleneck hinders the wide commercial applications of FWIPS (e.g., proximity promotions in a shopping center). To diminish the cost of site survey, we propose a probabilistic model, which combines fingerprinting based positioning (FbP) and RM generation based on stochastic variational Bayesian inference (SVBI). This SVBI based position and RSS estimation has three properties: i) being able to predict the distribution of the estimated position and RSS, ii) treating each observation of RSS at each RP as an example to learn for FbP and RM generation instead of using the whole RM as an example, and iii) requiring only one time training of the SVBI model for both localization and RSS estimation. These benefits make it outperforms the previous proposed approaches.