This paper studies the UAV-enabled integrated sensing and communication (ISAC), in which UAVs are dispatched as aerial dual-functional access points (APs) for efficient ISAC. In particular, we consider a scenario with one UAV-AP equipped with a vertically placed uniform linear array (ULA), which sends combined information and sensing signals to communicate with multiple users and sense potential targets at interested areas on the ground simultaneously. Our objective is to jointly design the UAV maneuver with the transmit beamforming for optimizing the communication performance while ensuring the sensing requirements. First, we consider the quasi-stationary UAV scenario, in which the UAV is deployed at an optimizable location over the whole ISAC mission period. In this case, we jointly optimize the UAV deployment location, as well as the transmit information and sensing beamforming to maximize the weighted sum-rate throughput, subject to the sensing beampattern gain requirements and transmit power constraint. Although the above problem is non-convex, we find a high-quality solution by using the techniques of SCA and SDR, together with a 2D location search. Next, we consider the fully mobile UAV scenario, in which the UAV can fly over different locations during the ISAC mission period. In this case, we optimize the UAV flight trajectory, jointly with the transmit beamforming over time, to maximize the average weighted sum-rate throughput, subject to the sensing beampattern gain requirements and transmit power constraints as well as practical flight constraints. While the joint UAV trajectory and beamforming problem is more challenging to solve, we propose an efficient algorithm by adopting the alternating optimization together with SCA. Finally, numerical results are provided to validate the superiority of our proposed designs as compared to various benchmark schemes.