Reconfigurable intelligent surface (RIS) assisted millimeter-wave (mmWave) communication systems relying on hybrid beamforming structures are capable of achieving high spectral efficiency at a low hardware complexity and low power consumption. In this paper, we propose an RIS-assisted mmWave point-to-point system relying on dynamically configured sub-array connected hybrid beamforming structures. More explicitly, an energy-efficient analog beamformer relying on twin-resolution phase shifters is proposed. Then, we conceive a successive interference cancelation (SIC) based method for jointly designing the hybrid beamforming matrix of the base station (BS) and the passive beamforming matrix of the RIS. Specifically, the associated bandwidth-efficiency maximization problem is transformed into a series of sub-problems, where the sub-array of phase shifters and RIS elements are jointly optimized for maximizing each sub-array's rate. Furthermore, a greedy method is proposed for determining the phase shifter configuration of each sub-array. We then propose to update the RIS elements relying on a complex circle manifold (CCM)-based method. The proposed dynamic sub-connected structure as well as the proposed joint hybrid and passive beamforming method strikes an attractive trade-off between the bandwidth efficiency and power consumption. Our simulation results demonstrate the superiority of the proposed method compared to its traditional counterparts.