The symmetry and geometry of input data are considered to be encoded in the internal data representation inside the neural network, but the specific encoding rule has been less investigated. By focusing on a joint group invariant function on the data-parameter domain, we present a systematic rule to find a dual group action on the parameter domain from a group action on the data domain. Further, we introduce generalized neural networks induced from the joint invariant functions, and present a new group theoretic proof of their universality theorems by using Schur's lemma. Since traditional universality theorems were demonstrated based on functional analytical methods, this study sheds light on the group theoretic aspect of the approximation theory, connecting geometric deep learning to abstract harmonic analysis.