The objective of this study is to analyze the statistics of the data rate and of the incident power density (IPD) in user-centric cell-free networks (UCCFNs). To this purpose, our analysis proposes a number of performance metrics derived using stochastic geometry (SG). On the one hand, the first moments and the marginal distribution of the IPD are calculated. On the other hand, bounds on the joint distributions of rate and IPD are provided for two scenarios: when it is relevant to obtain IPD values above a given threshold (for energy harvesting purposes), and when these values should instead remain below the threshold (for public health reasons). In addition to deriving these metrics, this work incorporates features related to UCCFNs which are new in SG models: a power allocation based on collective channel statistics, as well as the presence of potential overlaps between adjacent clusters. Our numerical results illustrate the achievable trade-offs between the rate and IPD performance. For the considered system, these results also highlight the existence of an optimal node density maximizing the joint distributions. (This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.)