Recently, there is a growing interest in achieving integrated sensing and communication (ISAC) in the sixth-generation (6G) cellular network. Inspired by this trend and the success of cooperative communication in cloud radio access network, this paper considers a networked device-free sensing architecture based on base station (BS) cooperation to transform the cellular network into a huge sensor that can provide ubiquitous and high-performance sensing services. Under this framework, the BSs first transmit the downlink communication signals to the mobile users and then estimate the range information of the targets based on their echoes. Next, a central processor collects the range information from all the BSs via the fronthaul links and localizes each target based on its distances to various BSs. To enable the above strategy in the 6G network, we will perform joint data association, non-line-of-sight (NLOS) mitigation, and clutter suppression, such that the central processor is able to find out the useful range estimations extracted from the line-of-sight (LOS) paths and match them to the right targets for localization. Numerical results show that our interested networked device-free sensing scheme for the 6G network can localize the targets with high accuracy in the challenging multi-path propagation environment.