Integrated sensing and communication (ISAC) has emerged as a promising paradigm for next-generation (6G) wireless networks, unifying radar sensing and communication on a shared hardware platform. This paper proposes a dynamic array partitioning framework for monostatic ISAC systems to fully exploit available spatial degrees of freedom (DoFs) and reconfigurable antenna topologies, enhancing sensing performance in complex scenarios. We first establish a theoretical foundation for our work by deriving Bayesian Cram\'{e}r-Rao bounds (BCRBs) under prior distribution constraints for heterogeneous target models, encompassing both point-like and extended targets. Building on this, we formulate a joint optimization framework for transmit beamforming and dynamic array partitioning to minimize the derived BCRBs for direction-of-arrival (DOA) estimation. The optimization problem incorporates practical constraints, including multi-user communication signal-to-interference-plus-noise ratio (SINR) requirements, transmit power budgets, and array partitioning feasibility conditions. To address the non-convexity of the problem, we develop an efficient alternating optimization algorithm combining the alternating direction method of multipliers (ADMM) with semi-definite relaxation (SDR). We also design novel maximum a posteriori (MAP) DOA estimation algorithms specifically adapted to the statistical characteristics of each target model. Extensive simulations illustrate the superiority of the proposed dynamic partitioning strategy over conventional fixed-array architectures across diverse system configurations.