GPT-3 (Generative Pre-trained Transformer 3) is a large-scale autoregressive language model developed by OpenAI, which has demonstrated impressive few-shot performance on a wide range of natural language processing (NLP) tasks. Hence, an intuitive application is to use it for data annotation. In this paper, we investigate whether GPT-3 can be used as a good data annotator for NLP tasks. Data annotation is the process of labeling data that could be used to train machine learning models. It is a crucial step in the development of NLP systems, as it allows the model to learn the relationship between the input data and the desired output. Given the impressive language capabilities of GPT-3, it is natural to wonder whether it can be used to effectively annotate data for NLP tasks. In this paper, we evaluate the performance of GPT-3 as a data annotator by comparing it with traditional data annotation methods and analyzing its output on a range of tasks. Through this analysis, we aim to provide insight into the potential of GPT-3 as a general-purpose data annotator in NLP.