Humans are capable of solving complex abstract reasoning tests. Whether this ability reflects a learning-independent inference mechanism applicable to any novel unlearned problem or whether it is a manifestation of extensive training throughout life is an open question. Addressing this question in humans is challenging because it is impossible to control their prior training. However, assuming a similarity between the cognitive processing of Artificial Neural Networks (ANNs) and humans, the extent to which training is required for ANNs' abstract reasoning is informative about this question in humans. Previous studies demonstrated that ANNs can solve abstract reasoning tests. However, this success required extensive training. In this study, we examined the learning-independent abstract reasoning of ANNs. Specifically, we evaluated their performance without any pretraining, with the ANNs' weights being randomly-initialized, and only change in the process of problem solving. We found that naive ANN models can solve non-trivial visual reasoning tests, similar to those used to evaluate human learning-independent reasoning. We further studied the mechanisms that support this ability. Our results suggest the possibility of learning-independent abstract reasoning that does not require extensive training.